cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297595 T(n,k) = Number of n X k 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 or 5 neighboring 1s.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 9, 9, 1, 6, 13, 25, 20, 1, 9, 33, 49, 69, 41, 1, 13, 69, 145, 154, 205, 85, 1, 19, 121, 443, 752, 577, 597, 178, 1, 28, 253, 1141, 3145, 3747, 1977, 1701, 369, 1, 41, 529, 3009, 10131, 23066, 18577, 6962, 4949, 769, 1, 60, 1013, 8455, 37929, 103673
Offset: 1

Views

Author

R. H. Hardin, Jan 01 2018

Keywords

Comments

Table starts
.1...2.....3.....4.......6........9........13..........19...........28
.1...5.....9....13......33.......69.......121.........253..........529
.1...9....25....49.....145......443......1141........3009.........8455
.1..20....69...154.....752.....3145.....10131.......37929.......150388
.1..41...205...577....3747....23066....103673......514290......2834897
.1..85...597..1977...18577...163704....975485.....6551844.....50398161
.1.178..1701..6962...93150..1172288...9403199....85828150....919035936
.1.369..4949.24441..464697..8419996..90862063..1120526916..16723808887
.1.769.14389.85803.2320289.60354437.875241087.14592832760.303459238317

Examples

			Some solutions for n=6 k=4
..0..0..0..0. .0..1..0..0. .1..0..0..0. .1..0..0..0. .0..0..1..0
..0..1..1..0. .0..0..1..0. .0..1..0..0. .0..1..0..0. .0..1..0..0
..0..0..0..0. .0..0..0..0. .0..1..0..0. .0..0..0..0. .0..0..0..0
..0..1..0..1. .0..0..1..1. .1..0..0..0. .0..0..0..0. .0..0..0..0
..0..1..1..1. .0..0..0..0. .1..0..0..0. .0..0..0..0. .1..0..0..0
..0..0..0..1. .1..1..0..0. .0..1..0..0. .0..0..0..0. .0..1..0..0
		

Crossrefs

Column 2 is A105309(n+1).
Row 1 is A000930(n+1).
Row 2 is A089977(n+1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3) -a(n-4)
k=3: a(n) = a(n-1) +2*a(n-2) +10*a(n-3) +4*a(n-4) -8*a(n-5) -8*a(n-6)
k=4: [order 9]
k=5: [order 22]
k=6: [order 40]
k=7: [order 83]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-3)
n=2: a(n) = a(n-1) +4*a(n-3)
n=3: a(n) = a(n-1) +a(n-2) +8*a(n-3) +7*a(n-4) -8*a(n-6) -6*a(n-7)
n=4: [order 12]
n=5: [order 26]
n=6: [order 49]