A297620 Positive numbers n such that n^2 == p (mod q) and n^2 == q (mod p) for some consecutive primes p,q.
6, 10, 12, 24, 42, 48, 62, 72, 76, 84, 90, 93, 108, 110, 120, 122, 128, 145, 146, 174, 187, 188, 194, 204, 208, 215, 220, 228, 232, 240, 241, 264, 297, 306, 310, 314, 317, 326, 329, 336, 349, 357, 366, 372, 386, 408, 410, 423, 426, 431, 444, 454, 456, 468, 470, 474, 518, 522, 535, 538, 546, 548
Offset: 1
Keywords
Examples
a(3) = 12 is in the sequence because 71 and 73 are consecutive primes with 12^2 == 73 (mod 71) and 12^2 == 71 (mod 73).
Links
- Robert Israel, Table of n, a(n) for n = 1..2305
Crossrefs
Contains A074924.
Programs
-
Maple
N:= 1000: # to get all terms <= N R:= {}: q:= 3: while q < N^2 do p:= q; q:= nextprime(q); if ((p mod 4 <> 3) or (q mod 4 <> 3)) and numtheory:-quadres(q,p) = 1 then xp:= numtheory:-msqrt(q,p); xq:= numtheory:-msqrt(p,q); for sp in [-1,1] do for sq in [-1,1] do v:= chrem([sp*xp,sq*xq],[p,q]); R:= R union {seq(v+k*p*q, k = 0..(N-v)/(p*q))} od od; fi; od: sort(convert(R,list));
Comments