cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A297770 Number of distinct runs in base-2 digits of n.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 3, 2, 1, 2, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 1, 2, 2, 3, 3, 2, 3, 4, 3, 3, 3, 2, 3, 4, 3, 3, 3, 2, 3, 4, 2, 4, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 1, 2, 2, 3, 3, 3, 3, 4, 3, 3, 2, 3, 4, 3, 4, 4, 3, 3, 3, 3, 4, 3, 2, 3
Offset: 1

Views

Author

Clark Kimberling, Jan 26 2018

Keywords

Comments

Every positive integers occurs infinitely many times.
***
Guide to related sequences:
Base b # runs # distinct runs

Examples

			27 in base-2: 1,1,0,1,1; three runs, of which 2 are distinct:  0 and 11, so that a(27) = 2.
		

Crossrefs

Cf. A005811 (number of runs, not necessarily distinct).

Programs

  • Mathematica
    b = 2; s[n_] := Length[Union[Split[IntegerDigits[n, b]]]]
    Table[s[n], {n, 1, 200}]
  • PARI
    apply( {A297770(n)=my(r=[0,0], c); while(n, my(d=bitand(n,1), L=valuation(n+d, 2)); !bittest(r[1+d], L) && c++ && r[1+d] += 1<>=L); c}, [0..99]) \\ M. F. Hasler, Jul 13 2024
    
  • PARI
    a(n) = my(s=strjoin(binary(n)), v=vecsort(concat(strsplit(s, "1"), strsplit(s, "0")), , 8)); #v-(v[1]==""); \\ Ruud H.G. van Tol, Aug 05 2024
  • Python
    from itertools import groupby
    def A297770(n): return len(set(map(lambda x:tuple(x[1]),groupby(bin(n)[2:])))) # Chai Wah Wu, Jul 13 2024
    

A043543 Number of distinct base-16 digits of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Keywords

Comments

The first 1, 2, 3, 4,.. occur at n = 1, 16 (10_16), 258 (102_16), 4131 (1023_16), 66100 (10234_16), 1057605 (102345_16). Obviously numbers >16 appear never, so this list of records is finite. - R. J. Mathar, Jul 08 2023

Crossrefs

Differs from A297784.

Programs

  • Maple
    A043543 := proc(n)
        convert(convert(n,base,16),set) ;
        nops(%) ;
    end proc: # R. J. Mathar, Jul 08 2023
  • Mathematica
    Table[Length[Union[IntegerDigits[n,16]]],{n,90}] (* Harvey P. Dale, Jul 23 2013 *)
Showing 1-2 of 2 results.