A297846 Primes p such that p is the largest member of a Wieferich tuple.
71, 359, 487, 863, 1069, 1093, 1483, 1549, 2281, 3511, 4871, 6451, 6733, 7393, 12049, 13691, 14107, 14149, 15377, 17401, 18787, 20771, 29573, 32933, 35747, 39233, 44483, 46021, 48947, 49559, 54787, 54979, 59197, 60493, 69401, 69653, 77263, 77867, 105323, 122327
Offset: 1
Keywords
Examples
The primes 31, 79, 251, 263, 421 and 1483 satisfy 31^(79-1) == 1 (mod 79^2), 79^(263-1) == 1 (mod 263^2), 263^(251-1) == 1 (mod 251^2), 251^(421-1) == 1 (mod 421^2), 421^(1483-1) == 1 (mod 1483^2) and 1483^(31-1) == 1 (mod 31^2), so those primes form a Wieferich tuple. Since 1483 is the largest member of the tuple, 1483 is a term of the sequence.
Programs
-
PARI
findwiefs(vec, lim) = my(v=[]); for(k=1, #vec, forprime(p=1, lim, if(Mod(vec[k], p^2)^(p-1)==1, v=concat(v, [p])))); vecsort(v, , 8) newprimes(v, w) = setminus(w, v) is(n) = my(v=findwiefs([n], n), w=[], np=[]); while(1, w=findwiefs(v, n); if(newprimes(v, w)==[], return(0), if(setsearch(vecsort(newprimes(v, w)), n) > 0, return(1))); v=concat(v, newprimes(v, w)); v=vecsort(v, , 8)) forprime(p=1, , if(is(p), print1(p, ", ")))
Extensions
More terms from Felix Fröhlich, Jan 22 2018
Comments