cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297847 Sexiness of p = prime(n): number of iterations of the function f(x) = x + 6 that leave p prime.

Original entry on oeis.org

0, 0, 4, 2, 3, 1, 2, 0, 1, 0, 2, 1, 3, 0, 2, 1, 0, 3, 2, 0, 1, 0, 1, 0, 2, 2, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 3, 2, 1, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Felix Fröhlich, Jan 07 2018

Keywords

Comments

a(n) > 0 iff p is a term of A023201.
a(n) = 0 iff p is a term of A140555.
a(n) = 2 iff p is a term of A046118.
a(n) > 2 iff p is a term of A023271.
a(n) < 4 except for n = 3. Proof: The last digits of the numbers in the progression repeat 1, 7, 3, 9, 5, 1, 7, 3, 9, 5, ..., so a(n) is at most 4, which only happens for p = 5, since A007652(n) = 5 only for n = 3.

Examples

			For n = 13: prime(13) = 41 and 41 remains prime through exactly 3 iterations of f(x) = x + 6, since 47, 53 and 59 are prime, but 65 is composite, so a(13) = 3.
		

Crossrefs

Programs

  • Mathematica
    Array[-2 + Length@ NestWhileList[# + 6 &, Prime@ #, PrimeQ] &, 105] (* Michael De Vlieger, Jan 11 2018 *)
  • PARI
    a(n) = my(p=prime(n), x=p, i=0); while(1, x=x+6; if(!ispseudoprime(x), return(i), i++))