A297868 Prime powers p^e with odd exponent e such that rho(p^(e+1)) is prime, where rho is A206369.
8, 27, 32, 125, 243, 512, 1331, 2048, 32768, 50653, 79507, 103823, 131072, 161051, 177147, 357911, 1419857, 2097152, 2248091, 3869893, 11089567, 15813251, 16974593, 20511149, 28934443, 69343957, 115501303, 147008443, 263374721, 536870912, 844596301, 1284365503, 1305751357
Offset: 1
Keywords
Examples
8=2^3 is a term because rho(2*8)=11 is prime, so 8 and 8*2*11 have the same x/rho(x) ratio, 8/5.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..28610
- Douglas E. Iannucci, On a variation of perfect numbers, INTEGERS: Electronic Journal of Combinatorial Number Theory, 6 (2006), #A41.
Programs
-
Mathematica
rho[n_] := n*DivisorSum[n, LiouvilleLambda[#]/# &]; fQ[n_] := Block[{p = FactorInteger[n][[1, 1]]}, PrimeQ[ rho[p n]]]; mx = 10^9; lst = Sort@ Flatten@ Table[ Prime[n]^e, {n, PrimePi[mx^(1/3)]}, {e, 3, Floor@ Log[ Prime@ n, mx], 2}]; Select[lst, fQ] (* Robert G. Wilson v, Jan 07 2018 *)
-
PARI
rhope(p, e) = my(s=1); for(i=1, e, s=s*p + (-1)^i); s; lista(nn) = {for (n=1, nn, if ((e = isprimepower(n,&p)) && (e > 1) && (e % 2) && isprime(rhope(p,e+1)), print1(n, ", ");););}
Comments