A297924 Number of set partitions of [2n] in which the size of the last block is n.
1, 1, 4, 20, 125, 952, 8494, 86025, 969862, 12020580, 162203607, 2363458396, 36930606254, 615302885459, 10878670826170, 203268056115256, 3999642836434361, 82617423216826640, 1786559190116778030, 40344863179696283037, 949348461372003462390
Offset: 0
Keywords
Examples
a(1) = 1: 1|2. a(2) = 4: 12|34, 13|24, 14|23, 1|2|34. a(3) = 20: 123|456, 124|356, 125|346, 126|345, 12|3|456, 134|256, 135|246, 136|245, 13|2|456, 145|236, 146|235, 156|234, 1|23|456, 14|2|356, 1|24|356, 15|2|346, 1|25|346, 16|2|345, 1|26|345, 1|2|3|456.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..466
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=k, 1, add(b(n-j, k)*binomial(n-1, j-1), j=1..n-k)) end: a:= n-> b(2*n, n): seq(a(n), n=0..25);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == k, 1, Sum[b[n - j, k]*Binomial[n - 1, j - 1], {j, 1, n - k}]]; a[n_] := b[2*n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 20 2018, translated from Maple *)
Comments