cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297924 Number of set partitions of [2n] in which the size of the last block is n.

Original entry on oeis.org

1, 1, 4, 20, 125, 952, 8494, 86025, 969862, 12020580, 162203607, 2363458396, 36930606254, 615302885459, 10878670826170, 203268056115256, 3999642836434361, 82617423216826640, 1786559190116778030, 40344863179696283037, 949348461372003462390
Offset: 0

Views

Author

Alois P. Heinz, Jan 08 2018

Keywords

Comments

The blocks are ordered with increasing least elements.
a(0) = 1 by convention.

Examples

			a(1) = 1: 1|2.
a(2) = 4: 12|34, 13|24, 14|23, 1|2|34.
a(3) = 20: 123|456, 124|356, 125|346, 126|345, 12|3|456, 134|256, 135|246, 136|245, 13|2|456, 145|236, 146|235, 156|234, 1|23|456, 14|2|356, 1|24|356, 15|2|346, 1|25|346, 16|2|345, 1|26|345, 1|2|3|456.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=k, 1,
          add(b(n-j, k)*binomial(n-1, j-1), j=1..n-k))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == k, 1, Sum[b[n - j, k]*Binomial[n - 1, j - 1], {j, 1, n - k}]];
    a[n_] := b[2*n, n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 20 2018, translated from Maple *)

Formula

a(n) = A121207(2n,n) = A124496(2n,n).