A297927 Decimal expansion of ratio of number of 1's to number of 2's in A293630.
2, 6, 3, 2, 9, 0, 4, 5, 5, 5, 1, 7, 9, 0, 6, 5, 9, 4, 5, 7, 9, 8, 7, 2, 8, 5, 5, 6, 7, 5, 3, 5, 9, 7, 4, 5, 7, 1, 1, 5, 5, 7, 0, 6, 2, 9, 0, 9, 8, 6, 4, 2, 3, 8, 0, 2, 3, 2, 2, 2, 0, 3, 4, 7, 4, 9, 3, 2, 5, 9, 4, 7, 2, 2, 1, 3, 0, 6, 9, 1, 2, 1, 3, 5, 6, 1, 9
Offset: 1
Examples
Equals 2.6329045551790659457987285567535974571155706290... After generating k steps of A293630: k = 0: [1, 2]; 1 k = 1: [1, 2, 1, 1]; 3 k = 2: [1, 2, 1, 1, 1, 2, 1]; 2.5 k = 3: [1, 2, 1, 1, 1, 2, ...]; 2.25 k = 4: [1, 2, 1, 1, 1, 2, ...]; 2.7 k = 5: [1, 2, 1, 1, 1, 2, ...]; 2.65 k = 6: [1, 2, 1, 1, 1, 2, ...]; 2.625 ... k = infinity: [1, 2, 1, 1, 1, 2, ...]; 2.632904555179...
Links
- Iain Fox, Table of n, a(n) for n = 1..20000
Programs
-
PARI
gen(build) = { my(S = [1, 2], n = 2, t = 3, L, nPrev, E); for(j = 1, build, L = S[#S]; n = n*(1+L)-L; t = t*(1+L)-L^2; nPrev = #S; for(r = 1, L, for(i = 1, nPrev-1, S = concat(S, S[i])))); E = S; for(j = build + 1, build + #E, L = E[#E+1-(j-build)]; n = n*(1+L)-L; t = t*(1+L)-L^2); return(1.0*(2 - t/n)/(t/n - 1)) } \\ (gradually increase build to get more precise answers)
Extensions
Terms after a(3) corrected by Iain Fox, Jan 16 2018
Comments