A297933 Rectangular array, by antidiagonals: Row n gives the numbers whose base-2 digits d(m), d(m-1), ..., d(0) having n as maximal run-length of 1's.
1, 2, 3, 4, 6, 7, 5, 11, 14, 15, 8, 12, 23, 30, 31, 9, 13, 28, 47, 62, 63, 10, 19, 29, 60, 95, 126, 127, 16, 22, 39, 61, 124, 191, 254, 255, 17, 24, 46, 79, 125, 252, 383, 510, 511, 18, 25, 55, 94, 159, 253, 508, 767, 1022, 1023, 20, 26, 56, 111, 190, 319
Offset: 1
Examples
Northwest corner: 1 2 4 5 8 9 10 16 3 6 11 12 13 19 22 24 7 14 23 28 29 39 46 55 15 30 47 60 61 79 94 111 31 62 95 124 125 159 190 223 63 126 191 252 253 319 382 447 127 254 383 508 509 639 766 895 *** Base-2 digits of 59: 1,1,1,0,1,1 with runs 111 and 11 of 1's, so that 59 is in row 3.
Programs
-
Mathematica
b = 2; s[n_] := Split[IntegerDigits[n, b]]; m[n_, d_] := Union[Select[s[n], MemberQ[#, d] &]] h[n_, d_] := Max[Map[Length, m[n, d]]] z = 6000; w = t[d_] := Table[h[n, d], {n, 1, z}] /. -Infinity -> 0 TableForm[Table[Flatten[Position[t[1], d]], {d, 0, 8}]] (* A297933 array *) u[d_] := Flatten[Position[t[1], d]] v[d_, n_] := u[d][[n]]; Table[v[n, k - n + 1], {k, 1, 11}, {n, 1, k}] // Flatten (* A297933 sequence *)
Comments