A297935 Least prime k such that n concatenations of n+1 consecutive primes in base 2, starting from k, generate another prime in base 10.
2, 2, 3, 2, 19, 53, 163, 53, 167, 31, 3, 37, 743, 97, 271, 17, 3, 41, 131, 691, 97, 181, 587, 523, 227, 211, 229, 3, 1697, 151, 1009, 23, 131, 151, 3137, 1621, 71, 439, 389, 521, 811, 1039, 179, 23, 311, 193, 227, 5869, 577, 6263, 31, 1901, 113, 1439, 1451, 107
Offset: 0
Examples
a(4) = 19 because the concatenation of 19, 23, 29, 31, 37 in base 2 is concat(concat(concat(concat(10011, 10111), 11101), 11111), 100101) that is the prime 41414629 in base 10 and 19 is the least prime to have this property.
Links
- Paolo P. Lava, Table of n, a(n) for n = 0..200
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,c,i,k,n; for n from 1 to q do for k from 1 to q do a:=ithprime(k); b:=convert(a,binary,decimal); for i from 1 to n-1 do a:=nextprime(a); c:=convert(a,binary,decimal); b:=b*10^(ilog10(c)+1)+c; od; a:=convert(b,decimal,binary); if isprime(a) then print(ithprime(k)); break; fi; od; od; end: P(10^3);
-
Mathematica
Table[Prime@ SelectFirst[Range[2^12], Function[k, PrimeQ@ FromDigits[Join @@ IntegerDigits[Prime@ Range[k, k + n], 2],2]]], {n, 0, 55}] (* Michael De Vlieger, Jan 09 2018 *)
-
PARI
eva(n) = subst(Pol(n), x, 10) decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i]) concat_primes(start, num) = my(v=[], s=""); forprime(p=start, , v=concat(v, [eva(binary(p))]); if(#v==num, break)); for(k=1, #v, s=concat(s, Str(v[k]))); eval(s) a(n) = forprime(k=1, , if(ispseudoprime(decimal(digits(concat_primes(k, n+1)), 2)), return(k))) \\ Felix Fröhlich, Jan 09 2018