A297968 Number of solutions to x*y*(x+y)=n in coprime integers.
0, 4, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
For n=6 the a(n)=6 solutions are (x,y) = (-3,1), (-3,2), (1,-3), (1,2), (2,1) and (2,-3).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- C. L. Stewart, On the number of solutions of polynomial congruences and Thue equations, J. Amer. Math. Soc. 4 (1991), 793-835.
- S. Y. Xiao et al, Integers h such that xy(x+y)=h has many integer solutions, Math Overflow
Programs
-
Maple
f:= proc(n) local d,count,x,s,ys; d:= numtheory:-divisors(n); count:= 0: for x in d union map(`-`,d) do if issqr(x^4+4*n*x) then s:= sqrt(x^4+4*n*x); ys:= select(t -> type(t,integer) and igcd(t,x)=1, [-(s+x^2)/(2*x), (x^2-s)/(2*x)]); count:= count + nops(ys); fi od; count end proc: map(f, [$1..200]);
-
Mathematica
f[n_] := Module[{d, count, x, s, ys}, d = Divisors[n]; count = 0; Do[If[ IntegerQ[Sqrt[x^4 + 4n x]], s = Sqrt[x^4 + 4n x]; ys = Select[{-(s+x^2)/ (2x), (x^2-s)/(2x)}, IntegerQ[#] && GCD[#, x] == 1&]; count = count + Length[ys]], {x, Union[d, -d]}]; count]; Array[f, 200] (* Jean-François Alcover, Apr 29 2019, after Robert Israel *)
Comments