cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A297828 Difference sequence of A297997.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 1, 2, 1, 3, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 04 2018

Keywords

Comments

Conjectures:
(1) 2 <= a(k) <= 4 for k>=1;
(2) if d is in {1,2,3}, then a(k) = d for infinitely many k.

Crossrefs

Programs

  • Mathematica
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    tbl = {}; a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[1]*b[n - 1] - a[0]*b[n - 2] + n;
    b[n_] := b[n] = mex[tbl = Join[{a[n], a[n - 1], b[n - 1]}, tbl], b[n - 1]];
    u = Table[a[n], {n, 0, 300}](* A297826 *)
    v = Table[b[n], {n, 0, 300}](* A297997 *)
    Differences[u];  (* A297827 *)
    Differences[v];  (* A297828 *)
    (* Peter J. C. Moses, Jan 03 2017 *)

A297830 Solution of the complementary equation a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.

Original entry on oeis.org

1, 2, 9, 12, 15, 18, 21, 26, 28, 33, 35, 40, 42, 47, 49, 54, 56, 59, 62, 67, 71, 73, 76, 79, 84, 88, 90, 93, 96, 101, 105, 107, 110, 113, 118, 122, 124, 127, 130, 135, 139, 141, 146, 148, 153, 155, 158, 161, 166, 168, 171, 176, 180, 182, 187, 189, 194, 196
Offset: 0

Views

Author

Clark Kimberling, Feb 04 2018

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. Conjecture: a(n) - (2 +sqrt(2))*n < 3 for n >= 1.
Guide to related sequences having initial values a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, where (b(n)) is the increasing sequence of positive integers not in (a(n)):
***
a(n) = a(1)*b(n-1) - a(0)*b(n-2) + n (a(n)) = A297826; (b(n)) = A297997
a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n (a(n)) = A297830; (b(n)) = A298003
a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 3*n (a(n)) = A297836; (b(n)) = A298004
a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 4*n (a(n)) = A297837; (b(n)) = A298005
a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n - 1 (a(n)) = A297831; (b(n)) = A298006
a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n - 2 (a(n)) = A297832; (b(n)) = A298007
a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n - 3 (a(n)) = A297833; (b(n)) = A298108
a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n - 4 (a(n)) = A297834; (b(n)) = A298109
a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n + 1 (a(n)) = A297835;
a(n) = a(1)*b(n-1) - a(0)*b(n-2)+floor(5*n/2) (a(n)) = A297998;
***
For sequences (a(n)) and (b(n)) associated with equations of the form a(n) = a(1)*b(n) - a(0)*b(n-1), see the guide at A297800.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = 9.
Complement: (b(n)) = (3,4,5,6,8,10,11,13,14,16,17,19,...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[1]*b[n - 1] - a[0]*b[n - 2] + 2 n;
    j = 1; While[j < 100, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; k
    Table[a[n], {n, 0, k}]  (* A297830 *)

A297826 Solution (a(n)) of the near-complementary equation a(n) = a(1)*b(n-1) - a(0)*b(n-2) + n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.

Original entry on oeis.org

1, 2, 7, 9, 11, 15, 18, 21, 22, 24, 28, 29, 33, 34, 40, 42, 43, 45, 51, 51, 53, 59, 59, 61, 63, 65, 69, 74, 76, 77, 79, 81, 83, 87, 90, 91, 93, 95, 97, 101, 104, 107, 110, 111, 113, 117, 118, 120, 122, 126, 131, 133, 136, 139, 140, 142, 146, 147, 153, 155
Offset: 0

Views

Author

Clark Kimberling, Feb 04 2018

Keywords

Comments

The sequence (a(n)) generated by the equation a(n) = a(1)*b(n-1) - a(0)*b(n-2) + n, with initial values as shown, includes duplicates; e.g. a(18) = a(19) = 51. If the duplicates are removed from (a(n)), the resulting sequence and (b(n)) are complementary. Conjectures:
(1) 0 <= a(k) - a(k-1) <= 6 for k>=1;
(2) if d is in {0,1,2,3,4,5,6}, then a(k) = a(k-1) + d for infinitely many k.
***
See A297830 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = 7.
Complement: (b(n)) = (3, 4, 5, 6, 8,10,12,13,14,16, ...)
		

Crossrefs

Programs

  • Mathematica
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    tbl = {}; a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[1]*b[n - 1] - a[0]*b[n - 2] + n;
    b[n_] := b[n] = mex[tbl = Join[{a[n], a[n - 1], b[n - 1]}, tbl], b[n - 1]];
    Table[a[n], {n, 0, 300}]  (* A297826 *)
    Table[b[n], {n, 0, 300}]  (* A297997 *)
    (* Peter J. C. Moses, Jan 03 2017 *)

A297827 Difference sequence of A297826.

Original entry on oeis.org

1, 5, 2, 2, 4, 3, 3, 1, 2, 4, 1, 4, 1, 6, 2, 1, 2, 6, 0, 2, 6, 0, 2, 2, 2, 4, 5, 2, 1, 2, 2, 2, 4, 3, 1, 2, 2, 2, 4, 3, 3, 3, 1, 2, 4, 1, 2, 2, 4, 5, 2, 3, 3, 1, 2, 4, 1, 6, 2, 3, 3, 1, 2, 4, 1, 4, 1, 4, 1, 6, 2, 1, 2, 6, 2, 3, 1, 2, 4, 1, 2, 2, 4, 3, 1, 4
Offset: 1

Views

Author

Clark Kimberling, Feb 04 2018

Keywords

Comments

Conjectures:
(1) 0 <= a(k) <= 6 for k>=1;
(2) if d is in {0,1,2,3,4,5,6}, then a(k) = d for infinitely many k; for d = 0, see A297829.

Crossrefs

Programs

  • Mathematica
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    tbl = {}; a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[1]*b[n - 1] - a[0]*b[n - 2] + n;
    b[n_] := b[n] = mex[tbl = Join[{a[n], a[n - 1], b[n - 1]}, tbl], b[n - 1]];
    u = Table[a[n], {n, 0, 300}](* A297826 *)
    v = Table[b[n], {n, 0, 300}](* A297997 *)
    Differences[u];  (* A297827 *)
    Differences[v];  (* A297828 *)
    (* Peter J. C. Moses, Jan 03 2017 *)

A297999 Solution (a(n)) of the near-complementary equation a(n) = a(1)*b(n) - a(0)*b(n-1) + n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, , b(2) = 5, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.

Original entry on oeis.org

1, 2, 8, 10, 12, 16, 19, 22, 23, 25, 29, 30, 34, 35, 41, 43, 44, 46, 52, 52, 54, 60, 60, 62, 64, 66, 70, 75, 77, 78, 80, 82, 84, 88, 91, 92, 94, 96, 98, 102, 105, 108, 111, 112, 114, 118, 119, 121, 123, 127, 132, 134, 137, 140, 141, 143, 147, 148, 154, 156
Offset: 0

Views

Author

Clark Kimberling, Feb 09 2018

Keywords

Comments

The sequence (a(n)) generated by the equation a(n) = a(1)*b(n) - a(0)*b(n-1) + n, with initial values as shown, includes duplicates; e.g. a(18) = a(19) = 52. If the duplicates are removed from (a(n)), the resulting sequence and (b(n)) are complementary. Conjectures:
(1) 0 <= a(k) - a(k-1) <= 6 for k>=1;
(2) if d is in {0,1,2,3,4,5,6}, then a(k) = a(k-1) + d for infinitely many k.
***
See A298000 and A297830 for guides to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, so that a(2) = 8.
Complement: (b(n)) = (3,4,5,6,7,9,11,13,14,15,17, ...)
		

Crossrefs

Programs

  • Mathematica
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[1]*b[n] - a[0]*b[n - 1] + n;
    Table[{a[n], b[n + 1] = mex[Flatten[Map[{a[#], b[#]} &, Range[0, n]]], b[n - 0]]}, {n, 2, 3000}];
    Table[a[n], {n, 0, 150}]  (* A297999 *)
    Table[b[n], {n, 0, 150}]  (* A298110 *)
    (* Peter J. C. Moses, Jan 16 2018 *)
Showing 1-5 of 5 results.