A297826 Solution (a(n)) of the near-complementary equation a(n) = a(1)*b(n-1) - a(0)*b(n-2) + n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.
1, 2, 7, 9, 11, 15, 18, 21, 22, 24, 28, 29, 33, 34, 40, 42, 43, 45, 51, 51, 53, 59, 59, 61, 63, 65, 69, 74, 76, 77, 79, 81, 83, 87, 90, 91, 93, 95, 97, 101, 104, 107, 110, 111, 113, 117, 118, 120, 122, 126, 131, 133, 136, 139, 140, 142, 146, 147, 153, 155
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = 7. Complement: (b(n)) = (3, 4, 5, 6, 8,10,12,13,14,16, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); tbl = {}; a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; a[n_] := a[n] = a[1]*b[n - 1] - a[0]*b[n - 2] + n; b[n_] := b[n] = mex[tbl = Join[{a[n], a[n - 1], b[n - 1]}, tbl], b[n - 1]]; Table[a[n], {n, 0, 300}] (* A297826 *) Table[b[n], {n, 0, 300}] (* A297997 *) (* Peter J. C. Moses, Jan 03 2017 *)
Comments