cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298010 Numbers n such that x*y*(x+y) = n has at least one solution in coprime integers.

Original entry on oeis.org

2, 6, 12, 20, 30, 42, 56, 70, 72, 84, 90, 110, 120, 126, 132, 156, 180, 182, 198, 210, 240, 264, 272, 286, 306, 308, 330, 342, 380, 390, 420, 462, 468, 506, 510, 520, 546, 552, 600, 624, 630, 646, 650, 660, 702, 714, 756, 798, 812, 840, 870, 880, 884, 912, 930, 966, 992, 1008, 1020, 1056, 1122
Offset: 1

Views

Author

Robert Israel, Jan 10 2018

Keywords

Comments

Numbers n such that A297968(n) > 0.
All terms are even.

Crossrefs

Cf. A297968.

Programs

  • Maple
    filter:= proc(n) local d,x,s,ys;
      d:= numtheory:-divisors(n);
      for x in d do
        if issqr(x^4+4*n*x) then
          s:= sqrt(x^4+4*n*x);
          ys:= select(t -> type(t,integer) and igcd(t,x)=1, [-(s+x^2)/(2*x), (x^2-s)/(2*x)]);
          if ys <> [] then return true fi;
        fi
      od;
      false
    end proc:
    select(filter, [seq(i,i=1..10000,2)]);
  • Mathematica
    f[n_] := Module[{d, count, x, s, ys}, d = Divisors[n]; count = 0; Do[If[ IntegerQ[Sqrt[x^4 + 4 n x]], s = Sqrt[x^4 + 4 n x]; ys = Select[{-(s + x^2)/(2x), (x^2 - s)/(2x)}, IntegerQ[#] && GCD[#, x] == 1&]; count = count + Length[ys]], {x, Union[d, -d]}]; count];
    Position[Array[f, 2000], ?Positive] // Flatten (* _Jean-François Alcover, Apr 29 2019, after Robert Israel in A297968 *)