A298010 Numbers n such that x*y*(x+y) = n has at least one solution in coprime integers.
2, 6, 12, 20, 30, 42, 56, 70, 72, 84, 90, 110, 120, 126, 132, 156, 180, 182, 198, 210, 240, 264, 272, 286, 306, 308, 330, 342, 380, 390, 420, 462, 468, 506, 510, 520, 546, 552, 600, 624, 630, 646, 650, 660, 702, 714, 756, 798, 812, 840, 870, 880, 884, 912, 930, 966, 992, 1008, 1020, 1056, 1122
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A297968.
Programs
-
Maple
filter:= proc(n) local d,x,s,ys; d:= numtheory:-divisors(n); for x in d do if issqr(x^4+4*n*x) then s:= sqrt(x^4+4*n*x); ys:= select(t -> type(t,integer) and igcd(t,x)=1, [-(s+x^2)/(2*x), (x^2-s)/(2*x)]); if ys <> [] then return true fi; fi od; false end proc: select(filter, [seq(i,i=1..10000,2)]);
-
Mathematica
f[n_] := Module[{d, count, x, s, ys}, d = Divisors[n]; count = 0; Do[If[ IntegerQ[Sqrt[x^4 + 4 n x]], s = Sqrt[x^4 + 4 n x]; ys = Select[{-(s + x^2)/(2x), (x^2 - s)/(2x)}, IntegerQ[#] && GCD[#, x] == 1&]; count = count + Length[ys]], {x, Union[d, -d]}]; count]; Position[Array[f, 2000], ?Positive] // Flatten (* _Jean-François Alcover, Apr 29 2019, after Robert Israel in A297968 *)
Comments