cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298014 Coordination sequence of snub-632 tiling with respect to a trivalent node of type short-short-long.

Original entry on oeis.org

1, 3, 9, 15, 18, 27, 37, 37, 44, 57, 54, 61, 77, 71, 78, 97, 88, 95, 117, 105, 112, 137, 122, 129, 157, 139, 146, 177, 156, 163, 197, 173, 180, 217, 190, 197, 237, 207, 214, 257, 224, 231, 277, 241, 248, 297, 258, 265, 317, 275, 282, 337, 292, 299, 357, 309, 316, 377, 326, 333, 397, 343, 350, 417, 360
Offset: 0

Views

Author

Chaim Goodman-Strauss and N. J. A. Sloane, Jan 11 2018

Keywords

Comments

The snub-632 tiling in also called the fsz-d net. It is the dual of the 3.3.3.3.6 Archimedean tiling.
This is also called the "6-fold pentille" tiling in Conway, Burgiel, Goodman-Strauss, 2008, p. 288. - Felix Fröhlich, Jan 13 2018

References

  • J. H. Conway, H. Burgiel and Chaim Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5.

Crossrefs

List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f:=proc(n) local k,r,L; L:=[1,3,9,15,18];
    if n<5 then L[n+1]
    else k:=floor(n/3); r:=n-3*k;
      if r=0 then 20*k-3 elif r=1 then 17*k+3 else 17*k+10; fi;
    fi; end;
    [seq(f(n),n=0..80)];
  • Mathematica
    Join[{1, 3, 9, 15, 18}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {27, 37, 37, 44, 57, 54}, 60]] (* Jean-François Alcover, Apr 28 2018 *)
  • PARI
    Vec(-(x+1)*(2*x^9+x^7-5*x^6-3*x^5-6*x^4-6*x^3-7*x^2-2*x-1)/((x-1)^2*(x^2+x+1)^2) + O(x^60)) \\ Colin Barker, Jan 13 2018

Formula

For n >= 5, let k=floor(n/3). Then a(3*k) = 20*k-3, a(3*k+1)=17*k+3, a(3*k+2)=17*k+10.
G.f.: -(x+1)*(2*x^9+x^7-5*x^6-3*x^5-6*x^4-6*x^3-7*x^2-2*x-1)/((x-1)^2*(x^2+x+1)^2).
a(n) = 2*a(n-3) - a(n-6) for n>10. - Colin Barker, Jan 13 2018