cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298016 Coordination sequence of snub-632 tiling with respect to a hexavalent node.

Original entry on oeis.org

1, 6, 12, 12, 24, 36, 24, 42, 60, 36, 60, 84, 48, 78, 108, 60, 96, 132, 72, 114, 156, 84, 132, 180, 96, 150, 204, 108, 168, 228, 120, 186, 252, 132, 204, 276, 144, 222, 300, 156, 240, 324, 168, 258, 348, 180, 276, 372, 192, 294, 396, 204, 312, 420, 216, 330, 444, 228, 348, 468, 240
Offset: 0

Views

Author

Chaim Goodman-Strauss and N. J. A. Sloane, Jan 11 2018

Keywords

Comments

The snub-632 tiling in also called the fsz-d net. It is the dual of the 3.3.3.3.6 Archimedean tiling.
This is also called the "6-fold pentille" tiling in Conway, Burgiel, Goodman-Strauss, 2008, p. 288. - Felix Fröhlich, Jan 13 2018

References

  • J. H. Conway, H. Burgiel and Chaim Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5.

Crossrefs

List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f:=proc(n) local k,r;
    if n=0 then return(1); fi;
    r:=(n mod 3); k:=(n-r)/3;
    if r=0 then 12*k elif r=1 then 18*k+6 else 24*k+12; fi;
    end;
    [seq(f(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {6, 12, 12, 24, 36, 24}, 60]] (* Jean-François Alcover, Apr 23 2018 *)
  • PARI
    Vec((1 + 6*x + 12*x^2 + 10*x^3 + 12*x^4 + 12*x^5 + x^6) / ((1 - x)^2*(1 + x + x^2)^2) + O(x^60)) \\ Colin Barker, Jan 13 2018

Formula

For n >= 1, let k=floor(n/3). Then a(3*k) = 12*k, a(3*k+1)=18*k+6, a(3*k+2)=24*k+12.
a(n) = 2*a(n-3) - a(n-6) for n >= 7.
G.f.: -(-x^6-12*x^5-12*x^4-10*x^3-12*x^2-6*x-1)/(x^6-2*x^3+1).