cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298022 Coordination sequence for Dual(3^3.4^2) tiling with respect to a trivalent node.

Original entry on oeis.org

1, 3, 7, 12, 17, 23, 28, 33, 37, 42, 47, 51, 56, 61, 65, 70, 75, 79, 84, 89, 93, 98, 103, 107, 112, 117, 121, 126, 131, 135, 140, 145, 149, 154, 159, 163, 168, 173, 177, 182, 187, 191, 196, 201, 205, 210, 215, 219, 224, 229, 233, 238, 243, 247, 252, 257, 261
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

This tiling is also called the prismatic pentagonal tiling, or the cem-d net. It is one of the 11 Laves tilings.

References

  • B. Gruenbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987. See p. 96.

Crossrefs

See A298023 for partial sums, A298024 for a tetravalent point.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Cf. A049347.

Programs

  • PARI
    \\ See Links section.

Formula

Conjectures from Colin Barker, Jan 22 2018: (Start)
G.f.: (1 + 2*x + 4*x^2 + 4*x^3 + 3*x^4 + 2*x^5 - 2*x^8) / ((1 - x)^2*(1 + x + x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>5. (End)
Conjecture: a(n) = 2*(21*n + 3*A049347(n+2)/2)/9 for n > 4. - Stefano Spezia, Nov 24 2024

Extensions

More terms from Rémy Sigrist, Jan 21 2018