A298040 Coordination sequence of Dual(4.6.12) tiling with respect to a tetravalent node.
1, 4, 20, 24, 40, 40, 60, 56, 80, 72, 100, 88, 120, 104, 140, 120, 160, 136, 180, 152, 200, 168, 220, 184, 240, 200, 260, 216, 280, 232, 300, 248, 320, 264, 340, 280, 360, 296, 380, 312, 400, 328, 420, 344, 440, 360, 460, 376, 480, 392, 500, 408, 520, 424, 540
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Tom Karzes, Tiling Coordination Sequences
- N. J. A. Sloane, Illustration of initial terms (shows one 90-degree quadrant of tiling)
- N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Programs
-
Mathematica
LinearRecurrence[{0,2,0,-1},{1,4,20,24,40,40},60] (* Harvey P. Dale, Apr 06 2022 *)
Formula
Conjecture: For n>0, a(n)=10n if n even, otherwise 8n.
Conjectures from Colin Barker, Apr 01 2020: (Start)
G.f.: (1 + 4*x + 18*x^2 + 16*x^3 + x^4 - 4*x^5) / ((1 - x)^2*(1 + x)^2).
a(n) = (9 + (-1)^n)*n for n>1.
a(n) = 2*a(n-2) - a(n-4) for n>5.
(End)
Extensions
Terms a(8)-a(54) added by Tom Karzes, Apr 01 2020