cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A298050 Number of nX3 0..1 arrays with every element equal to 1, 2, 4 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 7, 15, 19, 23, 34, 63, 96, 147, 233, 368, 588, 933, 1500, 2404, 3842, 6157, 9887, 15907, 25577, 41128, 66175, 106524, 171543, 276293, 445096, 717116, 1155533, 1862256, 3001558, 4838268, 7799411, 12573667, 20271639, 32684289, 52699948
Offset: 1

Views

Author

R. H. Hardin, Jan 11 2018

Keywords

Comments

Column 3 of A298055.

Examples

			Some solutions for n=7
..0..0..1. .0..1..0. .0..1..1. .0..1..0. .0..1..1. .0..1..0. .0..1..0
..1..0..1. .1..0..1. .0..1..0. .0..1..0. .0..1..0. .1..0..1. .1..0..1
..0..1..0. .0..1..0. .1..1..0. .1..1..1. .1..0..1. .0..1..0. .0..1..0
..1..1..0. .1..0..1. .1..1..0. .1..1..1. .0..1..0. .1..0..1. .1..0..1
..1..1..0. .0..1..0. .0..1..0. .0..1..0. .1..0..1. .0..1..0. .0..1..0
..0..1..0. .1..0..1. .1..0..1. .1..0..0. .0..1..0. .1..0..1. .1..0..1
..0..1..1. .0..1..0. .0..1..0. .0..1..1. .1..0..1. .1..0..0. .0..0..1
		

Crossrefs

Cf. A298055.

Formula

Empirical: a(n) = 3*a(n-1) -a(n-2) -2*a(n-3) -3*a(n-5) +3*a(n-6) +3*a(n-7) -a(n-8) +2*a(n-9) +6*a(n-10) -8*a(n-11) -3*a(n-12) -4*a(n-13) -2*a(n-14) +4*a(n-15) +8*a(n-16) -a(n-17) -3*a(n-18) for n>19

A298051 Number of nX4 0..1 arrays with every element equal to 1, 2, 4 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

2, 13, 19, 40, 73, 141, 240, 428, 779, 1531, 2989, 5729, 10760, 20205, 38568, 74861, 144345, 276668, 528526, 1012806, 1946937, 3753744, 7220044, 13870376, 26646526, 51244788, 98611858, 189814459, 365167476, 702384337, 1351233021, 2600175921
Offset: 1

Views

Author

R. H. Hardin, Jan 11 2018

Keywords

Comments

Column 4 of A298055.

Examples

			Some solutions for n=5
..0..0..0..0. .0..1..1..0. .0..1..1..0. .0..1..0..1. .0..0..1..1
..1..1..1..1. .0..0..1..0. .0..0..1..0. .0..1..0..1. .1..1..0..0
..0..1..1..0. .1..1..1..0. .1..1..1..0. .1..1..1..0. .0..1..1..1
..0..1..1..0. .0..0..1..1. .0..1..0..1. .1..1..1..1. .0..1..0..0
..1..0..0..1. .1..1..0..0. .0..1..0..1. .1..0..0..0. .0..1..1..0
		

Crossrefs

Cf. A298055.

Formula

Empirical: a(n) = 3*a(n-1) -a(n-2) +a(n-3) -9*a(n-4) +7*a(n-5) +7*a(n-6) -37*a(n-7) +11*a(n-8) +28*a(n-9) +100*a(n-10) -98*a(n-11) -42*a(n-12) +161*a(n-13) -16*a(n-14) -345*a(n-15) -156*a(n-16) +337*a(n-17) +239*a(n-18) -795*a(n-19) +167*a(n-20) +1078*a(n-21) -183*a(n-22) -882*a(n-23) +372*a(n-24) +1998*a(n-25) -553*a(n-26) -1150*a(n-27) +1555*a(n-28) +1083*a(n-29) -3924*a(n-30) -3204*a(n-31) +1846*a(n-32) +337*a(n-33) -2717*a(n-34) -470*a(n-35) +5473*a(n-36) +1235*a(n-37) -3801*a(n-38) +1779*a(n-39) +3426*a(n-40) +552*a(n-41) -310*a(n-42) +2887*a(n-43) +2284*a(n-44) -4842*a(n-45) -3600*a(n-46) +757*a(n-47) -1823*a(n-48) -3322*a(n-49) +653*a(n-50) +4588*a(n-51) +1961*a(n-52) -2239*a(n-53) -1266*a(n-54) +902*a(n-55) +461*a(n-56) -486*a(n-57) -212*a(n-58) -41*a(n-59) -145*a(n-60) +320*a(n-61) +534*a(n-62) +56*a(n-63) -277*a(n-64) -189*a(n-65) -24*a(n-66) +40*a(n-67) +26*a(n-68) +9*a(n-69) +2*a(n-70) -2*a(n-71) -a(n-72) for n>73

A298052 Number of nX5 0..1 arrays with every element equal to 1, 2, 4 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

3, 23, 23, 73, 121, 231, 422, 865, 1729, 3286, 6319, 12563, 24164, 46151, 91180, 179529, 348543, 679612, 1324925, 2580453, 5044253, 9857924, 19226398, 37521143, 73217267, 142924098, 278999274, 544730946, 1063235208, 2075512334, 4051405413
Offset: 1

Views

Author

R. H. Hardin, Jan 11 2018

Keywords

Comments

Column 5 of A298055.

Examples

			Some solutions for n=5
..0..1..0..0..1. .0..0..0..0..0. .0..1..1..1..1. .0..0..1..0..1
..0..1..1..0..1. .0..1..0..0..1. .0..0..1..1..0. .1..0..1..0..1
..0..1..1..0..0. .1..1..0..0..1. .1..1..1..0..1. .1..0..0..0..0
..1..1..1..1..1. .0..0..0..0..0. .0..0..1..0..1. .1..0..0..1..1
..0..0..0..0..1. .0..1..1..1..1. .0..1..1..0..1. .1..0..1..0..0
		

Crossrefs

Cf. A298055.

A298053 Number of nX6 0..1 arrays with every element equal to 1, 2, 4 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

5, 49, 34, 141, 231, 512, 780, 1577, 3162, 6228, 12289, 24231, 47917, 95955, 187945, 374818, 743024, 1477074, 2928956, 5839339, 11579457, 23039070, 45786076, 91055211, 180969990, 360008076, 715728819, 1423402113, 2830545436, 5629547006
Offset: 1

Views

Author

R. H. Hardin, Jan 11 2018

Keywords

Comments

Column 6 of A298055.

Examples

			Some solutions for n=5
..0..1..0..1..0..0. .0..1..1..0..1..0. .0..1..0..1..0..0. .0..1..0..1..1..0
..0..0..1..1..0..1. .0..0..1..0..0..1. .0..0..1..1..0..1. .0..1..0..0..1..0
..0..0..0..1..1..1. .0..0..1..1..1..0. .1..1..0..0..0..1. .1..0..0..1..0..1
..0..1..0..0..1..1. .1..0..1..1..1..0. .0..1..1..1..0..0. .0..0..0..0..1..0
..1..1..0..1..0..1. .0..1..0..0..1..0. .0..1..0..0..1..1. .1..1..1..1..0..1
		

Crossrefs

Cf. A298055.

A298054 Number of nX7 0..1 arrays with every element equal to 1, 2, 4 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 95, 63, 240, 422, 780, 1708, 3362, 6794, 14943, 29523, 61474, 128150, 264417, 548393, 1137867, 2348710, 4866530, 10091166, 20917294, 43349064, 89869896, 186296604, 386177081, 800695527, 1660420377, 3442732936, 7137995410
Offset: 1

Views

Author

R. H. Hardin, Jan 11 2018

Keywords

Comments

Column 7 of A298055.

Examples

			Some solutions for n=5
..0..1..1..1..0..0..1. .0..0..1..1..1..0..0. .0..1..0..1..1..1..0
..0..0..1..1..1..1..0. .1..1..0..0..0..1..1. .1..0..0..1..0..1..0
..1..1..1..0..1..0..1. .0..0..0..1..0..0..0. .1..0..1..0..1..0..1
..0..0..1..0..1..0..1. .1..1..0..1..0..1..1. .1..0..0..1..0..1..0
..0..1..1..0..1..0..1. .1..0..0..1..0..0..1. .0..1..0..1..1..1..0
		

Crossrefs

Cf. A298055.

A298049 Number of n X n 0..1 arrays with every element equal to 1, 2, 4 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 3, 15, 40, 121, 512, 1708, 7014, 35804, 201703, 1158266, 7391098, 54852360
Offset: 1

Views

Author

R. H. Hardin, Jan 11 2018

Keywords

Comments

Diagonal of A298055.

Examples

			Some solutions for n=5
..0..0..1..0..0. .0..0..0..1..0. .0..0..0..1..0. .0..1..1..1..0
..1..1..0..1..1. .1..1..1..0..1. .1..1..1..0..0. .1..0..0..0..1
..0..1..1..1..0. .0..1..1..0..0. .0..0..0..0..0. .0..0..1..0..0
..0..1..0..1..0. .0..1..1..1..1. .0..1..0..1..0. .1..1..0..1..1
..1..0..1..0..1. .1..1..1..0..0. .1..1..0..1..1. .1..0..1..0..1
		

Crossrefs

Cf. A298055.
Showing 1-6 of 6 results.