cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298077 Oblong numbers that are the sum of 2 successive primes.

Original entry on oeis.org

12, 30, 42, 90, 210, 240, 462, 600, 702, 930, 1482, 1560, 1722, 2352, 2862, 2970, 6162, 6480, 6642, 7656, 8010, 8556, 10920, 13572, 13806, 14280, 14762, 15006, 15750, 16002, 21462, 22350, 22650, 23562, 24492, 25122, 27060, 27390, 29070, 29412, 34410, 34782
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 11 2018

Keywords

Comments

Is this sequence infinite?
Includes all n*(n+1) for which n*(n+1)/2 - 2 and n*(n+1)/2 + 2 are prime. The generalized Bunyakovsky conjecture implies there are infinitely many of these. - Robert Israel, Feb 11 2018

Examples

			a(4)=90 because 90 is oblong (i.e., 9*10) and the sum of 2 successive primes (i.e., 43+47).
		

Crossrefs

Intersection of A001043 and A002378.

Programs

  • Maple
    filter:= proc(n) not isprime(n/2) and prevprime(n/2)+nextprime(n/2) = n end proc:
    select(filter, [seq(n*(n+1), n=2..200)]); # Robert Israel, Feb 11 2018
  • Mathematica
    Select[Total /@ Partition[Prime@ Range[2^11], 2, 1], IntegerQ@ Sqrt[4 # + 1] &] (* Michael De Vlieger, Jan 11 2018 *)
  • PARI
    isok(n) = my(p = 2); forprime(q=3, n, if (p+q==n, return (1)); p = q);
    lista(nn) = {for (n=1, nn, m = n*(n+1); if (isok(m), print1(m, ", ")););} \\ Michel Marcus, Jan 13 2018
    
  • Python
    from _future_ import division
    from sympy import prevprime,nextprime,isprime
    A298077_list = [n*(n+1) for n in range(3,10**4) if prevprime(n*(n+1)//2) + nextprime(n*(n+1)//2) == n*(n+1)] # Chai Wah Wu, Feb 11 2018