A298110 Solution (b(n)) of the near-complementary equation a(n) = a(1)*b(n) - a(0)*b(n-1) + n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.
3, 4, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 20, 21, 24, 26, 27, 28, 31, 32, 33, 36, 37, 38, 39, 40, 42, 45, 47, 48, 49, 50, 51, 53, 55, 56, 57, 58, 59, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 76, 79, 81, 83, 85, 86, 87, 89, 90, 93, 95, 97, 99, 100, 101, 103
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, so that a(2) = 8. Complement: A298110 = (3,4,5,6,7,9,11,13,14,15,17, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
Programs
-
Mathematica
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; a[n_] := a[1]*b[n] - a[0]*b[n - 1] + n; Table[{a[n], b[n + 1] = mex[Flatten[Map[{a[#], b[#]} &, Range[0, n]]], b[n - 0]]}, {n, 2, 3000}]; Table[a[n], {n, 0, 150}] (* A297999 *) Table[b[n], {n, 0, 150}] (* A298110 *) (* Peter J. C. Moses, Jan 16 2018 *)
Comments