A298135
Number of nX4 0..1 arrays with every element equal to 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 2, 3, 10, 20, 68, 185, 561, 1600, 4856, 14490, 43334, 130046, 390291, 1172586, 3523139, 10593181, 31854446, 95807649, 288198019, 867005085, 2608469794, 7848188504, 23614061363, 71053102045, 213798191069, 643325960937
Offset: 1
Some solutions for n=7
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0
..0..1..0..1. .1..0..1..0. .1..0..1..0. .1..0..0..1. .1..0..0..1
..0..0..0..1. .1..0..1..0. .1..1..0..0. .1..1..1..0. .1..1..1..0
..0..1..1..0. .0..1..1..0. .1..0..1..0. .0..0..0..1. .1..0..1..0
..1..0..0..1. .1..0..1..0. .1..0..1..0. .0..1..1..0. .1..0..0..1
..1..1..1..1. .1..1..0..0. .1..1..0..0. .1..1..0..0. .1..1..1..1
A298136
Number of n X 5 0..1 arrays with every element equal to 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 11, 0, 20, 88, 242, 627, 2604, 8137, 28727, 101137, 350450, 1221711, 4290711, 14968081, 52427734, 183691236, 643194452, 2252416158, 7891461835, 27639419217, 96818359023, 339160988868, 1188063187221, 4161765906348, 14578893452507
Offset: 1
Some solutions for n=7
..0..0..1..0..0. .0..0..0..0..0. .0..0..1..0..0. .0..0..1..1..1
..1..0..1..1..0. .0..1..1..1..0. .0..1..0..1..0. .0..1..0..0..1
..1..1..0..0..1. .1..0..0..1..1. .0..1..0..1..0. .0..1..1..1..0
..1..0..1..1..0. .1..0..1..0..1. .1..0..0..1..0. .1..0..0..0..1
..1..0..1..0..0. .1..0..1..0..1. .1..0..0..0..1. .1..0..1..1..1
..1..0..1..0..1. .1..0..1..0..1. .0..1..0..1..0. .0..1..1..0..1
..1..1..0..1..1. .1..1..0..1..1. .0..0..1..0..0. .0..0..0..0..0
A298137
Number of nX6 0..1 arrays with every element equal to 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 13, 3, 68, 242, 917, 3417, 14533, 58845, 244155, 1024766, 4297121, 17950575, 75199021, 314755111, 1317874937, 5519233903, 23115442566, 96811939884, 405493370013, 1698383143180, 7113695019637, 29796021993208, 124802553668569
Offset: 1
Some solutions for n=7
..0..0..1..1..0..0. .0..0..0..0..0..1. .0..0..0..1..1..0. .0..1..1..0..1..1
..0..1..0..1..1..0. .0..1..1..0..1..1. .0..0..0..1..0..0. .0..0..1..0..0..1
..1..1..0..1..1..1. .0..1..0..1..0..0. .1..1..1..1..1..0. .0..1..1..1..1..0
..0..1..0..0..0..1. .0..1..0..1..0..1. .1..0..0..0..0..1. .1..0..0..0..0..1
..0..0..0..0..1..0. .0..1..0..0..1..1. .0..1..0..1..1..0. .1..0..1..1..1..0
..1..1..0..1..1..0. .0..1..0..1..0..1. .0..1..0..0..1..0. .0..1..1..0..0..1
..1..0..0..1..0..0. .0..0..1..1..0..0. .0..0..1..1..0..0. .0..0..0..0..1..1
A298138
Number of nX7 0..1 arrays with every element equal to 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 34, 6, 185, 627, 3417, 14422, 73961, 354200, 1772595, 8807624, 44087860, 218942205, 1093100404, 5447861031, 27173970577, 135547796845, 676389434363, 3374295032672, 16836823878509, 84007635799139, 419167042007303
Offset: 1
Some solutions for n=7
..0..0..1..0..1..1..1. .0..0..0..1..1..0..0. .0..0..1..0..0..1..1
..0..1..0..1..0..0..1. .1..0..1..1..0..1..0. .0..1..1..1..0..0..1
..0..1..0..1..0..1..0. .1..1..1..1..0..0..1. .1..0..0..0..1..0..1
..0..1..0..1..0..1..0. .1..0..0..1..1..1..1. .0..1..1..0..1..0..1
..0..1..0..1..0..1..0. .1..0..1..0..1..1..0. .0..0..1..0..1..0..1
..0..1..1..0..1..0..1. .0..1..1..0..1..0..0. .1..0..1..0..1..0..1
..0..0..0..0..0..1..1. .0..0..0..1..1..1..0. .1..1..0..1..0..1..1
A298134
Number of n X n 0..1 arrays with every element equal to 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 1, 0, 10, 88, 917, 14422, 467043, 17828062, 1081228309
Offset: 1
Some solutions for n=7
..0..0..1..1..1..0..0. .0..0..0..0..0..0..0. .0..0..1..0..0..0..1
..0..1..0..1..0..0..1. .0..1..1..1..1..1..0. .0..1..1..1..0..1..1
..1..0..0..1..1..1..1. .1..0..0..0..0..0..1. .0..1..0..1..0..0..1
..1..1..1..0..0..0..0. .0..1..1..1..1..0..1. .0..1..0..0..1..1..0
..1..0..1..0..1..1..0. .1..0..0..0..0..1..1. .0..1..0..1..0..0..0
..0..0..1..0..1..0..1. .0..1..1..1..1..1..0. .0..1..0..1..0..1..0
..0..1..1..0..0..1..1. .0..0..0..0..0..0..0. .0..0..1..0..1..1..1
Showing 1-5 of 5 results.
Comments