A298168 The first of three consecutive triangular numbers the sum of which is equal to the sum of three consecutive primes.
1, 6, 28, 55, 66, 253, 351, 496, 595, 946, 2278, 2775, 3403, 3486, 4851, 6105, 7626, 9045, 11935, 14706, 23871, 33670, 39903, 41328, 43365, 46056, 46971, 50721, 53301, 60378, 64261, 87990, 91378, 92665, 114481, 124251, 126253, 126756, 134421, 141246, 144991
Offset: 1
Keywords
Examples
31 is in the sequence because 6+10+15 (consecutive triangular numbers) = 31 = 7+11+13 (consecutive primes).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..300 from Colin Barker)
Programs
-
Mathematica
(#(#+1))/2&/@(Select[(Sqrt[3] Sqrt[8#-5]-9)/6&/@(Total/@Partition[Prime[ Range[ 20000]],3,1]),IntegerQ]) (* Harvey P. Dale, Jun 22 2019 *)
-
PARI
L=List(); forprime(p=2, 400000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(24*t-15, &sq) && (sq-9)%6==0, u=(sq-9)\6; listput(L, u*(u+1)/2))); Vec(L)