A298187 T(n,k)=Number of nXk 0..1 arrays with every element equal to 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 2, 0, 0, 3, 2, 2, 3, 0, 0, 5, 3, 3, 3, 5, 0, 0, 8, 5, 4, 4, 5, 8, 0, 0, 13, 8, 6, 5, 6, 8, 13, 0, 0, 21, 13, 9, 7, 7, 9, 13, 21, 0, 0, 34, 21, 14, 10, 10, 10, 14, 21, 34, 0, 0, 55, 34, 22, 15, 14, 14, 15, 22, 34, 55, 0, 0, 89, 55, 35, 23, 20, 19, 20, 23, 35, 55
Offset: 1
Examples
Some solutions for n=7 k=4 ..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0 ..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0 ..0..0..0..0. .0..0..1..1. .0..0..0..0. .1..1..1..1. .0..0..0..0 ..0..0..0..0. .0..0..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1 ..0..0..0..0. .0..0..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1 ..0..0..0..0. .0..0..1..1. .1..1..1..1. .0..0..0..0. .0..0..0..0 ..0..0..0..0. .0..0..1..1. .1..1..1..1. .0..0..0..0. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..760
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-2)
k=3: a(n) = a(n-1) +a(n-2)
k=4: a(n) = 2*a(n-1) -a(n-3) for n>4
k=5: a(n) = 2*a(n-1) -a(n-3) for n>4
k=6: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-4) -2*a(n-5) +a(n-7) for n>8
k=7: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-4) -2*a(n-5) +a(n-6) -a(n-7) +a(n-8) -a(n-10) +a(n-11) for n>12
Comments