A298246 Expansion of Product_{k>=1} (1 + x^(k*(k+1)*(2*k+1)/6)).
1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1
Offset: 0
Keywords
Examples
a(91) = 2 because we have [91] and [55, 30, 5, 1].
Links
- Eric Weisstein's World of Mathematics, Square Pyramidal Number
- Index entries for related partition-counting sequences
Programs
-
Mathematica
nmax = 104; CoefficientList[Series[Product[1 + x^(k (k + 1) (2 k + 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} (1 + x^A000330(k)).
Comments