A298251 The first of three consecutive primes the sum of which is equal to the sum of three consecutive pentagonal numbers.
199, 35951, 46351, 69221, 88427, 230291, 490481, 707573, 829883, 1088419, 1129693, 1258109, 1736101, 1918157, 1976243, 2456939, 2741159, 2753351, 2822881, 3249419, 4603351, 5121713, 5528623, 6186407, 6664429, 6945559, 6964949, 7094839, 7120963, 7147121
Offset: 1
Keywords
Examples
199 is in the sequence because 199+211+223 (consecutive primes) = 633 = 176+210+247 (consecutive pentagonal numbers).
Links
- Robert Israel, Table of n, a(n) for n = 1..2352
Programs
-
Maple
N:= 10^8: # to get all terms where the sums <= N Res:= NULL: mmax:= floor((sqrt(8*N-23)-5)/6): M3:= map(t->9/2*t^2+15/2*t+6, [seq(seq(4*i+j,j=2..3),i=0..mmax/4)]): for m in M3 do r:= ceil((m-8)/3); p1:= prevprime(r+1); p2:= nextprime(p1); p3:= nextprime(p2); while p1+p2+p3 > m do p3:= p2; p2:= p1; p1:= prevprime(p1); od: if p1+p2+p3 = m then Res:= Res, p1 fi od: Res; # Robert Israel, Jan 16 2018
-
Mathematica
Module[{nn=50000,pn},pn=Total/@Partition[PolygonalNumber[5,Range[ Ceiling[ (1+Sqrt[1+24 Prime[nn]])/6]]],3,1];Select[Partition[ Prime[ Range[ nn]],3,1],MemberQ[pn,Total[#]]&]][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 12 2020 *)
-
PARI
L=List(); forprime(p=2, 8000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(72*t-207, &sq) && (sq-15)%18==0, u=(sq-15)\18; listput(L, p))); Vec(L)