cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298251 The first of three consecutive primes the sum of which is equal to the sum of three consecutive pentagonal numbers.

Original entry on oeis.org

199, 35951, 46351, 69221, 88427, 230291, 490481, 707573, 829883, 1088419, 1129693, 1258109, 1736101, 1918157, 1976243, 2456939, 2741159, 2753351, 2822881, 3249419, 4603351, 5121713, 5528623, 6186407, 6664429, 6945559, 6964949, 7094839, 7120963, 7147121
Offset: 1

Views

Author

Colin Barker, Jan 15 2018

Keywords

Examples

			199 is in the sequence because 199+211+223 (consecutive primes) = 633 = 176+210+247 (consecutive pentagonal numbers).
		

Crossrefs

Programs

  • Maple
    N:= 10^8: # to get all terms where the sums <= N
    Res:= NULL:
    mmax:= floor((sqrt(8*N-23)-5)/6):
    M3:= map(t->9/2*t^2+15/2*t+6, [seq(seq(4*i+j,j=2..3),i=0..mmax/4)]):
    for m in M3 do
      r:= ceil((m-8)/3);
      p1:= prevprime(r+1);
      p2:= nextprime(p1);
      p3:= nextprime(p2);
      while p1+p2+p3 > m do
        p3:= p2; p2:= p1; p1:= prevprime(p1);
      od:
      if p1+p2+p3 = m then
        Res:= Res, p1
      fi
    od:
    Res; # Robert Israel, Jan 16 2018
  • Mathematica
    Module[{nn=50000,pn},pn=Total/@Partition[PolygonalNumber[5,Range[ Ceiling[ (1+Sqrt[1+24 Prime[nn]])/6]]],3,1];Select[Partition[ Prime[ Range[ nn]],3,1],MemberQ[pn,Total[#]]&]][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 12 2020 *)
  • PARI
    L=List(); forprime(p=2, 8000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(72*t-207, &sq) && (sq-15)%18==0, u=(sq-15)\18; listput(L, p))); Vec(L)