A298266 Number of nonisomorphic proper colorings of partition multicycle graph using six colors.
1, 6, 21, 15, 56, 90, 40, 126, 315, 120, 240, 165, 252, 840, 720, 840, 600, 990, 624, 462, 1890, 2520, 680, 2240, 3600, 820, 3465, 2475, 3744, 2635, 792, 3780, 6720, 4080, 5040, 12600, 4800, 4920, 9240, 14850, 6600, 13104, 9360, 15810, 11160, 1287, 6930, 15120, 14280, 3060, 10080, 33600, 28800, 17220, 12300, 20790, 51975, 19800, 39600, 13695, 34944, 56160, 24960, 55335, 39525, 66960, 48915, 2002, 11880, 30240, 38080, 18360, 18480, 75600, 100800, 27200, 45920, 73800, 11480, 41580, 138600, 118800, 138600, 99000, 82170, 78624, 196560, 74880, 149760, 102960, 147560, 237150, 105400, 234360, 167400, 293490, 217040
Offset: 0
Examples
Rows are: 1; 6; 21, 15; 56, 90, 40; 126, 315, 120, 240, 165; 252, 840, 720, 840, 600, 990, 624;
Links
- Marko Riedel et al., Orbital chromatic polynomials
Formula
For a partition lambda we have the OCP: Product_{p^v in lambda} C(Q_p(k)+v-1, v)
where Q_1(k) = k, Q_2(k) = k(k-1)/2 and for n>=3, Q_n(k) = (1/n) * Sum_{d|n} phi(n/d) P_d(k) with P_d(k) = (k-1)^d + (-1)^d (k-1). Here we have k=6.
Comments