A298272 The first of three consecutive hexagonal numbers the sum of which is equal to the sum of three consecutive primes.
6, 6216, 7626, 9180, 16836, 19900, 22366, 29646, 76636, 89676, 93096, 114960, 116886, 118828, 322806, 365940, 397386, 422740, 437580, 471906, 499500, 574056, 595686, 626640, 690900, 743590, 984906, 1041846, 1148370, 1209790, 1260078, 1357128, 1450956
Offset: 1
Keywords
Examples
6 is in the sequence because 6+15+28 (consecutive hexagonal numbers) = 49 = 13+17+19 (consecutive primes).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (first 100 terms from Colin Barker)
Crossrefs
Programs
-
Maple
N:= 100: # to get a(1)..a(100) count:= 0: mmax:= floor((sqrt(24*N-87)-9)/12): for i from 1 while count < N do mi:= 2*i; m:= 6*mi^2+9*mi+7; r:= ceil((m-8)/3); p1:= prevprime(r+1); p2:= nextprime(p1); p3:= nextprime(p2); while p1+p2+p3 > m do p3:= p2; p2:= p1; p1:= prevprime(p1); od: if p1+p2+p3 = m then count:= count+1; A[count]:= mi*(2*mi-1); fi od: seq(A[i], i=1..count); # Robert Israel, Jan 16 2018
-
PARI
L=List(); forprime(p=2, 2000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(24*t-87, &sq) && (sq-9)%12==0, u=(sq-9)\12; listput(L, u*(2*u-1)))); Vec(L)