cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298272 The first of three consecutive hexagonal numbers the sum of which is equal to the sum of three consecutive primes.

Original entry on oeis.org

6, 6216, 7626, 9180, 16836, 19900, 22366, 29646, 76636, 89676, 93096, 114960, 116886, 118828, 322806, 365940, 397386, 422740, 437580, 471906, 499500, 574056, 595686, 626640, 690900, 743590, 984906, 1041846, 1148370, 1209790, 1260078, 1357128, 1450956
Offset: 1

Views

Author

Colin Barker, Jan 16 2018

Keywords

Examples

			6 is in the sequence because 6+15+28 (consecutive hexagonal numbers) = 49 = 13+17+19 (consecutive primes).
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(100)
    count:= 0:
    mmax:= floor((sqrt(24*N-87)-9)/12):
    for i from 1 while count < N do
      mi:= 2*i;
      m:= 6*mi^2+9*mi+7;
      r:= ceil((m-8)/3);
      p1:= prevprime(r+1);
      p2:= nextprime(p1);
      p3:= nextprime(p2);
      while p1+p2+p3 > m do
        p3:= p2; p2:= p1; p1:= prevprime(p1);
      od:
      if p1+p2+p3 = m then
        count:= count+1;
        A[count]:= mi*(2*mi-1);
      fi
    od:
    seq(A[i], i=1..count); # Robert Israel, Jan 16 2018
  • PARI
    L=List(); forprime(p=2, 2000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(24*t-87, &sq) && (sq-9)%12==0, u=(sq-9)\12; listput(L, u*(2*u-1)))); Vec(L)