cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A298608 Polynomials related to the Motzkin numbers for Coxeter type D, T(n, k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 2, 6, 2, 1, 6, 9, 12, 3, 1, 8, 30, 24, 20, 4, 1, 20, 50, 90, 50, 30, 5, 1, 30, 140, 180, 210, 90, 42, 6, 1, 70, 245, 560, 490, 420, 147, 56, 7, 1, 112, 630, 1120, 1680, 1120, 756, 224, 72, 8, 1
Offset: 0

Views

Author

Peter Luschny, Jan 23 2018

Keywords

Comments

The polynomials evaluated at x = 1 give the analog of the Motzkin numbers for Coxeter type D (see A298300 (with a shift in the indexing)).

Examples

			The first few polynomials are:
  p0(x) =  1;
  p1(x) =  0 +     x;
  p2(x) =  2 +     x +     x^2;
  p3(x) =  2 +   6*x +   2*x^2 +     x^3;
  p4(x) =  6 +   9*x +  12*x^2 +   3*x^3 +    x^4;
  p5(x) =  8 +  30*x +  24*x^2 +  20*x^3 +   4*x^4 +     x^5;
  p6(x) = 20 +  50*x +  90*x^2 +  50*x^3 +  30*x^4 +   5*x^5 +    x^6;
  p7(x) = 30 + 140*x + 180*x^2 + 210*x^3 +  90*x^4 +  42*x^5 +  6*x^6 +   x^7;
The triangle starts:
  [0][  1]
  [1][  0,   1]
  [2][  2,   1,    1]
  [3][  2,   6,    2,    1]
  [4][  6,   9,   12,    3,    1]
  [5][  8,  30,   24,   20,    4,   1]
  [6][ 20,  50,   90,   50,   30,   5,   1]
  [7][ 30, 140,  180,  210,   90,  42,   6,  1]
  [8][ 70, 245,  560,  490,  420, 147,  56,  7, 1]
  [9][112, 630, 1120, 1680, 1120, 756, 224, 72, 8, 1]
		

Crossrefs

Row sums are A298300(n+1) for n >= 1.

Programs

  • Maple
    A298608Poly := n -> `if`(n=0, 1, binomial(2*n, n)*(hypergeom([-n, -n], [-n+1/2], 1/2-x/4) + ((n-1)/(n+1))*hypergeom([-n+1, -n-1], [-n+1/2], 1/2-x/4))):
    A298608Row := n -> op(PolynomialTools:-CoefficientList(simplify(A298608Poly(n)), x)): seq(A298608Row(n), n=0..9);
  • Mathematica
    p[0] := 1;
    p[n_] := GegenbauerC[n, -n , -x/2] + GegenbauerC[n - 1, -n , -x/2] (n - 1) / n;
    Table[CoefficientList[p[n], x], {n, 0, 9}] // Flatten

Formula

T(n,k) = A109187(n,k) + A298609(n,k).
The polynomials are defined by p(0, x) = 1 and for n >= 1 by p(n, x) = G(n,-n,-x/2) + G(n-1,-n,-x/2)*(n-1)/n where G(n, a, x) denotes the n-th Gegenbauer polynomial.
p(n, x) = binomial(2*n,n)*(hypergeom([-n,-n], [-n+1/2], 1/2-x/4) + ((n-1)/(n+1))*hypergeom([-n+1,-n-1], [-n+1/2], 1/2-x/4)) for n >= 1.
Showing 1-1 of 1 results.