cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298308 Expansion of (9*x^3+9*x+1)^(1/3).

Original entry on oeis.org

1, 3, -9, 48, -288, 1917, -13563, 99927, -758079, 5879754, -46401687, 371336886, -3005973612, 24568135839, -202441986099, 1679863711851, -14024710539684, 117715876380531, -992724682487382, 8407187391492162, -71467928398473984, 609605247759545934, -5215842747304421544, 44752623977413097928, -384969343166207926893
Offset: 0

Views

Author

Robert Israel, Jan 16 2018

Keywords

Examples

			(9*x^3+9*x+1)^(1/3) = 1+3*x-9*x^2+48*x^3-288*x^4+1917*x^5+...
		

Programs

  • Maple
    f:= gfun:-rectoproc({(-9+9*n)*a(n)+(15+9*n)*a(n+2)+(n+3)*a(n+3), a(0) = 1, a(1) = 3, a(2) = -9},a(n),remember):
    map(f, [$0..30]);
  • Mathematica
    CoefficientList[Series[(9*x^3 + 9*x + 1)^(1/3), {x, 0, 25}], x] (* Wesley Ivan Hurt, Jan 20 2024 *)

Formula

G.f.: (9*x^3+9*x+1)^(1/3).
D-finite with recurrence: (-9+9*n)*a(n)+(15+9*n)*a(n+2)+(n+3)*a(n+3) = 0.
a(n) = Gamma(4/3)*Sum_{0<=j<=n/3} 9^(n-2*j)/(Gamma(4/3-n+2*j)*(n-3*j)!*j!).