A298321 The Nekrasov-Okounkov sequence.
1, 1, 1, 1, 2, 3, 3, 4, 3, 8, 6, 9, 8, 9, 12, 13, 11, 13, 12, 16, 18, 19, 18, 19, 21, 22, 22, 24, 24, 27, 25, 26, 29, 28, 31, 33, 32, 34, 32, 37, 35, 36, 37, 38, 42, 42, 41, 42, 43, 46, 48, 48, 45, 48, 50, 53, 54, 54, 51, 56, 56, 55, 58, 59, 60, 62, 62, 62
Offset: 1
Keywords
Examples
For n = 5, a(n) = 2 because the coefficient of x^5 is Product_{m>=1} (1-x^m)^(z-1). This can be factorized as -(z-7)*(z-4)*(z-1)*(z^2 -23*z + 30)/120.
Links
- Vincent Delecroix, Table of n, a(n) for n = 1..506
- Vincent Delecroix, SageMath script to generate the sequence
- Guo-Niu Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, Annales de l'institut Fourier, 60 no. 1 (2010), pp. 1-29.
- Nikita A. Nekrasov and Andrei Okounkov, Seiberg-Witten Theory and Random Partitions, arXiv:hep-th/0306238, 2003.
Programs
-
Julia
using Nemo function A298321(len) R, z = PolynomialRing(ZZ, 'z') Q = [R(1)]; S = [1, 1, 1, 1] for n in 1:len-4 p = z*sum(sigma(ZZ(k), 1)*risingfac(n-k+1, k-1)*Q[n-k+1] for k in 1:n) push!(Q, p) for (f, m) in factor(p) deg = degree(f) deg > 1 && push!(S, deg) end end S end A298321(72) |> println # Peter Luschny, Oct 27 2018, after Vincent Delecroix
-
Mathematica
(* This naive program is not suitable to compute a large number of terms *) a[n_] := a[n] = SeriesCoefficient[Product[(1-x^m)^(z-1), {m, 1, n}], {x, 0, n}] // Factor // Last // Exponent[#, z]&; Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 18 2019 *)
-
PARI
{a(n) = vecmax(apply(x->poldegree(x), factor(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(z-1)), n))[, 1]))} \\ Seiichi Manyama, Nov 07 2020
Extensions
More terms from Vincent Delecroix, Oct 05 2018
Comments