A298356 a(n) = a(n-1) + a(n-2) + a([n/2]) + a([n/3]) + ... + a([n/n]), where a(0) = 1, a(1) = 1, a(2) = 1.
1, 1, 1, 4, 8, 16, 32, 57, 103, 178, 308, 514, 874, 1441, 2394, 3926, 6462, 10531, 17231, 28001, 45614, 74026, 120258, 194903, 316210, 512171, 830007, 1343883, 2176578, 3523150, 5704107, 9231637, 14942711, 24181525, 39135483, 63328289, 102482212, 165828942
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 0, 30}] (* A298356 *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A298356(n): if n <= 2: return 1 c, j = A298356(n-1)+A298356(n-2), 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*A298356(k1) j, k1 = j2, n//j2 return c+n-j+1 # Chai Wah Wu, Mar 31 2021
Comments