A298357 a(n) = a(n-1) + a(n-2) + a([n/2]) + a([n/3]) + ... + a([n/n]), where a(0) = 1, a(1) = 2, a(2) = 3.
1, 2, 3, 9, 19, 37, 74, 131, 238, 410, 710, 1184, 2014, 3320, 5516, 9044, 14888, 24262, 39698, 64510, 105089, 170545, 277057, 449027, 728502, 1179967, 1912216, 3096110, 5014519, 8116824, 13141430, 21268343, 34425826, 55710704, 90162442, 145899135, 236104060
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a[0] = 1; a[1] = 2; a[2] = 3; a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 0, 30}] (* A298357 *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A298357(n): if n <= 2: return n+1 c, j = A298357(n-1)+A298357(n-2), 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*A298357(k1) j, k1 = j2, n//j2 return c+2*(n-j+1) # Chai Wah Wu, Mar 31 2021
Comments