A298408 a(n) = 2*a(n-1) - a(n-3) + 2*a(floor(n/2)) + 3*a(floor(n/3)) + ... + n*a(floor(n/n)), where a(0) = 1, a(1) = 1, a(2) = 1.
1, 1, 1, 6, 20, 53, 130, 277, 574, 1115, 2126, 3862, 7021, 12341, 21553, 36957, 63111, 106224, 178407, 296638, 492231, 811731, 1335994, 2188950, 3583027, 5847108, 9532980, 15512342, 25226123, 40967842, 66506422, 107869832, 174908573, 283452771, 459264017
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = 2*a[n - 1] - a[n - 3] + Sum[k*a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 0, 90}] (* A298408 *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A298408(n): if n <= 2: return 1 c, j = 2*A298408(n-1)-A298408(n-3), 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2*(j2-1)-j*(j-1))*A298408(k1)//2 j, k1 = j2, n//j2 return c+(n*(n+1)-j*(j-1))//2 # Chai Wah Wu, Mar 31 2021
Comments