A298409 a(n) = 2*a(n-1) - a(n-3) + 2*a(floor(n/2)) + 3*a(floor(n/3)) + ... + n*a(floor(n/n)), where a(0) = 1, a(1) = 2, a(2) = 3.
1, 2, 3, 15, 48, 123, 300, 635, 1316, 2555, 4873, 8850, 16096, 28296, 49424, 84749, 144733, 243607, 409156, 680308, 1128889, 1861633, 3063978, 5020133, 8217296, 13409702, 21862824, 35575784, 57853195, 93954953, 152524643, 247386674, 401132014, 650065133
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a[0] = 1; a[1] = 2; a[2] = 3; a[n_] := a[n] = 2*a[n - 1] - a[n - 3] + Sum[k*a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 0, 90}] (* A298409 *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A298409(n): if n <= 2: return n+1 c, j = 2*A298409(n-1)-A298409(n-3), 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2*(j2-1)-j*(j-1))*A298409(k1)//2 j, k1 = j2, n//j2 return c+2*(n*(n+1)-j*(j-1))//2 # Chai Wah Wu, Mar 31 2021
Comments