cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A307889 G.f. A(x) satisfies: A(x) = 1 + x*A(x^2)/(1 - x)^2.

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 14, 22, 30, 44, 58, 82, 106, 144, 182, 242, 302, 392, 482, 616, 750, 942, 1134, 1408, 1682, 2062, 2442, 2966, 3490, 4196, 4902, 5850, 6798, 8048, 9298, 10940, 12582, 14706, 16830, 19570, 22310, 25800, 29290, 33722, 38154, 43720, 49286, 56260, 63234, 71890, 80546
Offset: 0

Views

Author

Ilya Gutkovskiy, May 03 2019

Keywords

Crossrefs

Programs

  • Maple
    N:=100: # to get a(1)..a(N)
    A:= 1:
    for iter from 1 do
      B:= convert(series(1 + x*subs(x=x^2,A)/(1-x)^2, x, N+1),polynom);
      if B = A then break fi;
      A:= B;
    od:
    seq(coeff(A,x,j),j=0..N); # Robert Israel, May 03 2019
  • Mathematica
    terms = 50; A[] = 0; Do[A[x] = 1 + x A[x^2]/(1 - x)^2 + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = 2 a[n - 1] - a[n - 2] + a[Floor[n/2]]; Join[{1, 1}, Differences[Table[2 a[n + 1], {n, 50}]]]
Showing 1-1 of 1 results.