A298464 The first of two consecutive primes the sum of which is equal to the sum of two consecutive pentagonal numbers.
79, 3643, 10909, 37123, 56053, 70849, 78889, 125551, 178877, 209063, 258743, 330409, 350411, 395261, 439559, 469279, 479387, 499969, 620813, 663997, 754723, 828811, 878597, 901709, 1026709, 1087147, 1170397, 1202429, 1213189, 1234873, 1340477, 1510013
Offset: 1
Keywords
Examples
79 is in the sequence because 79+83 (consecutive primes) = 162 = 70+92 (consecutive pentagonal numbers).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Block[{s = Total /@ Partition[PolygonalNumber[5, Range[10^3]], 2, 1], t}, t = Partition[Prime@ Range@ PrimePi[2 Last[s]], 2, 1]; Select[t, MemberQ[s, Total@ #] &][[All, 1]]] (* Michael De Vlieger, Jan 21 2018 *)
-
PARI
L=List(); forprime(p=2, 1600000, q=nextprime(p+1); t=p+q; if(issquare(12*t-8, &sq) && (sq-2)%6==0, u=(sq-2)\6; listput(L, p))); Vec(L)
-
Python
from _future_ import division from sympy import prevprime, nextprime A298464_list, n, m = [], 1 ,6 while len(A298464_list) < 10000: k = prevprime(m//2) if k + nextprime(k) == m: A298464_list.append(k) n += 1 m += 6*n-1 # Chai Wah Wu, Jan 20 2018