A298465 The first of two consecutive heptagonal numbers the sum of which is equal to the sum of two consecutive primes.
1, 18, 403, 16281, 24354, 167314, 172528, 183196, 191407, 223054, 413512, 446688, 476767, 507826, 512343, 791578, 926289, 994456, 1032658, 1248562, 1284147, 2221708, 2278630, 2453716, 2604571, 2738952, 2770443, 3207523, 3333330, 4203577, 4400332, 4628761
Offset: 1
Keywords
Examples
18 is in the sequence because 18+34 (consecutive heptagonal numbers) = 52 = 23+29 (consecutive primes).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
chcpQ[{a_,b_}]:=Module[{c=(a+b)/2},NextPrime[c]+ NextPrime[c,-1] ==a+b]; Select[ Partition[PolygonalNumber[7,Range[2000]],2,1],chcpQ][[;;,1]] (* Harvey P. Dale, Mar 14 2023 *)
-
PARI
L=List(); forprime(p=2, 6000000, q=nextprime(p+1); t=p+q; if(issquare(20*t-16, &sq) && (sq-2)%10==0, u=(sq-2)\10; listput(L, (5*u^2-3*u)/2))); Vec(L)
-
Python
from sympy import prevprime, nextprime A298465_list, n, m = [], 1 ,8 while len(A298465_list) < 10000: k = prevprime(m//2) if k + nextprime(k) == m: A298465_list.append(n*(5*n-3)//2) n += 1 m += 10*n-3 # Chai Wah Wu, Jan 19 2018