A298466 The first of two consecutive primes the sum of which is equal to the sum of two consecutive heptagonal numbers.
3, 23, 433, 16481, 24593, 167953, 173183, 183871, 192097, 223781, 414521, 447743, 477857, 508951, 513473, 792983, 927803, 996019, 1034251, 1250309, 1285937, 2224063, 2281003, 2456191, 2607109, 2741561, 2773073, 3210353, 3336209, 4206817, 4403647, 4632161
Offset: 1
Keywords
Examples
23 is in the sequence because 23+29 (consecutive primes) = 52 = 18+34 (consecutive heptagonal numbers).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Module[{hep=Total/@Partition[PolygonalNumber[7,Range[1500]],2,1]},Select[ Partition[Prime[Range[PrimePi[Max[hep]/2]]],2,1],MemberQ[hep,Total[#]]&]][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 04 2019 *)
-
PARI
L=List(); forprime(p=2, 6000000, q=nextprime(p+1); t=p+q; if(issquare(20*t-16, &sq) && (sq-2)%10==0, u=(sq-2)\10; listput(L, p))); Vec(L)
-
Python
from sympy import prevprime, nextprime A298466_list, n, m = [], 1 ,8 while len(A298466_list) < 10000: k = prevprime(m//2) if k + nextprime(k) == m: A298466_list.append(k) n += 1 m += 10*n-3 # Chai Wah Wu, Jan 19 2018