A298484 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is defined by the following: A(1,k) = k and A(n,k) = A(n-1,k)*(A(n-1,k)+1) for n > 1.
1, 2, 2, 3, 6, 6, 4, 12, 42, 42, 5, 20, 156, 1806, 1806, 6, 30, 420, 24492, 3263442, 3263442, 7, 42, 930, 176820, 599882556, 10650056950806, 10650056950806, 8, 56, 1806, 865830, 31265489220, 359859081592975692, 113423713055421844361000442, 113423713055421844361000442
Offset: 1
Examples
Square array begins: 1, 2, 3, 4, 5, 6, ... 2, 6, 12, 20, 30, 42, ... 6, 42, 156, 420, 930, 1806, ... 42, 1806, 24492, 176820, 865830, 3263442, ... 1806, 3263442, 599882556, 31265489220, 74966245730, 10650056950806, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..13, flattened
Crossrefs
Programs
-
Mathematica
A[1, k_?Positive] := k; A[n_?Positive, k_?Positive] := A[n, k] = A[n - 1, k]*(A[n - 1, k] + 1); Table[A[n - k + 1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Feb 05 2018 *)