cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298533 Number of unlabeled rooted trees with n vertices such that every branch of the root has the same number of leaves.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 31, 64, 144, 333, 808, 2004, 5109, 13199, 34601, 91539, 244307, 656346, 1774212, 4820356, 13157591, 36060811, 99198470, 273790194, 757971757, 2104222594, 5856496542, 16338140048, 45678276507, 127964625782, 359155302204, 1009790944307
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2018

Keywords

Examples

			The a(5) = 8 trees: ((((o)))), (((oo))), ((o(o))), ((ooo)), (o((o))), ((o)(o)), (oo(o)), (oooo)
		

Crossrefs

Programs

  • Mathematica
    rut[n_]:=rut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]];
    Table[Length[Select[rut[n],SameQ@@(Count[#,{},{0,Infinity}]&/@#)&]],{n,15}]
  • PARI
    \\ here R is A055277 as vector of polynomials
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1  + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
    seq(n)={my(M=Mat(apply(p->Colrev(p,n), R(n-1)))); concat([1],sum(i=2, #M, EulerT(M[i,])))} \\ Andrew Howroyd, May 20 2018

Extensions

Terms a(19) and beyond from Andrew Howroyd, May 20 2018