A298534 Matula-Goebel numbers of rooted trees such that every branch of the root has the same number of leaves.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 36, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 53, 54, 55, 59, 60, 61, 62, 64, 66, 67, 71, 72, 73, 75, 79, 80, 81, 83, 88, 89, 90, 91, 93, 96, 97, 99, 100
Offset: 1
Keywords
Examples
Sequence of trees begins: 1 o 2 (o) 3 ((o)) 4 (oo) 5 (((o))) 6 (o(o)) 7 ((oo)) 8 (ooo) 9 ((o)(o)) 10 (o((o))) 11 ((((o)))) 12 (oo(o)) 13 ((o(o))) 15 ((o)((o))) 16 (oooo) 17 (((oo))) 18 (o(o)(o)) 19 ((ooo)) 20 (oo((o))) 22 (o(((o)))) 23 (((o)(o))) 24 (ooo(o)) 25 (((o))((o))) 27 ((o)(o)(o)) 29 ((o((o)))) 30 (o(o)((o)))
Crossrefs
Programs
-
Mathematica
nn=2000; primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; leafcount[n_]:=If[n===1,1,With[{m=primeMS[n]},If[Length[m]===1,leafcount[First[m]],Total[leafcount/@m]]]]; Select[Range[nn],SameQ@@leafcount/@primeMS[#]&]