A298535 Number of unlabeled rooted trees with n vertices such that every branch of the root has a different number of leaves.
1, 1, 1, 2, 5, 13, 32, 80, 200, 511, 1323, 3471, 9183, 24491, 65715, 177363, 481135, 1311340, 3589023, 9860254, 27181835, 75165194, 208439742, 579522977, 1615093755, 4511122964, 12625881944, 35405197065, 99459085125, 279861792874, 788712430532, 2226015529592
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
rut[n_]:=rut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]]; Table[Length[Select[rut[n],UnsameQ@@(Count[#,{},{0,Infinity}]&/@#)&]],{n,15}]
-
PARI
\\ here R is A055277 as vector of polynomials R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1 + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)}; seq(n) = {my(M=Mat(apply(p->Colrev(p,n), R(n-1)))); Vec(prod(i=2, #M, 1 + x*Ser(M[i,])))} \\ Andrew Howroyd, May 20 2018
Extensions
Terms a(19) and beyond from Andrew Howroyd, May 20 2018