A298536 Matula-Goebel numbers of rooted trees such that every branch of the root has a different number of leaves.
1, 2, 3, 5, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 31, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 57, 58, 59, 61, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 122, 123, 127, 129, 131, 133
Offset: 1
Keywords
Examples
Sequence of trees begins: 1 o 2 (o) 3 ((o)) 5 (((o))) 7 ((oo)) 11 ((((o)))) 13 ((o(o))) 14 (o(oo)) 17 (((oo))) 19 ((ooo)) 21 ((o)(oo)) 23 (((o)(o))) 26 (o(o(o))) 29 ((o((o)))) 31 (((((o))))) 34 (o((oo))) 35 (((o))(oo)) 37 ((oo(o))) 38 (o(ooo)) 39 ((o)(o(o))) 41 (((o(o)))) 43 ((o(oo))) 46 (o((o)(o))) 47 (((o)((o))))
Crossrefs
Programs
-
Mathematica
nn=2000; primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; leafcount[n_]:=If[n===1,1,With[{m=primeMS[n]},If[Length[m]===1,leafcount[First[m]],Total[leafcount/@m]]]]; Select[Range[nn],UnsameQ@@leafcount/@primeMS[#]&]