cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A326534 MM-numbers of multiset partitions where every part has the same sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 175, 179, 181, 191
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2019

Keywords

Comments

First differs from A298538 in lacking 187.
These are numbers where each prime index has the same sum of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of multiset partitions where every part has the same sum, preceded by their MM-numbers, begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  16: {{},{},{},{}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
  35: {{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@primeMS/@primeMS[#]&]

A298537 Number of unlabeled rooted trees with n nodes such that every branch of the root has the same number of nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 25, 49, 127, 291, 766, 1843, 5003, 12487, 34151, 87983, 242088, 634848, 1763749, 4688677, 13085621, 35241441, 98752586, 268282856, 755353825, 2067175933, 5837592853, 16087674276, 45550942142, 126186554309, 358344530763, 997171512999
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2018

Keywords

Examples

			The a(5) = 6 trees: ((((o)))), (((oo))), ((o(o))), ((ooo)), ((o)(o)), (oooo).
		

Crossrefs

Programs

  • Mathematica
    r[n_]:=r[n]=If[n===1,1,Sum[Product[Binomial[r[x]+Count[ptn,x]-1,Count[ptn,x]],{x,Union[ptn]}],{ptn,IntegerPartitions[n-1]}]];
    Table[If[n===1,1,Sum[Binomial[r[(n-1)/d]+d-1,d],{d,Divisors[n-1]}]],{n,40}]

Formula

a(n + 1) = Sum_{d|n} binomial(A000081(n/d) + d - 1, d).

A298540 Matula-Goebel numbers of rooted trees such that every branch of the root has a different number of nodes.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
5  (((o)))
6  (o(o))
7  ((oo))
10 (o((o)))
11 ((((o))))
13 ((o(o)))
14 (o(oo))
15 ((o)((o)))
17 (((oo)))
19 ((ooo))
21 ((o)(oo))
22 (o(((o))))
23 (((o)(o)))
26 (o(o(o)))
29 ((o((o))))
30 (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    nn=500;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGweight[n_]:=If[n===1,1,1+Total[MGweight/@primeMS[n]]];
    Select[Range[nn],UnsameQ@@MGweight/@primeMS[#]&]
Showing 1-3 of 3 results.