A298539 Number of unlabeled rooted trees with n vertices such that every branch of the root has a different number of nodes.
1, 1, 1, 3, 6, 15, 35, 89, 218, 571, 1446, 3834, 10003, 26864, 71120, 193602, 519409, 1423539, 3865590, 10666555, 29185905, 81078369, 223367624, 623192655, 1727907182, 4840616872, 13482957335, 37923616139, 106070402639, 299214369115, 840217034149
Offset: 1
Keywords
Examples
The a(5) = 6 trees: ((((o)))), (((oo))), ((o(o))), ((ooo)), (o((o))), (o(oo)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
nn=20; r[n_]:=r[n]=If[n===1,1,Sum[Product[Binomial[r[x]+Count[ptn,x]-1,Count[ptn,x]],{x,Union[ptn]}],{ptn,IntegerPartitions[n-1]}]]; Table[SeriesCoefficient[Product[1+r[n]x^n,{n,nn}],{x,0,n}],{n,0,nn}]
Formula
G.f.: Product_{n>0} (1 + A000081(n) x^n).