cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298592 Triangle read by rows: T(n,k) = number of parking functions of length n whose lead number is k.

Original entry on oeis.org

1, 2, 1, 8, 5, 3, 50, 34, 25, 16, 432, 307, 243, 189, 125, 4802, 3506, 2881, 2401, 1921, 1296, 65536, 48729, 40953, 35328, 30208, 24583, 16807, 1062882, 800738, 683089, 601441, 531441, 461441, 379793, 262144, 20000000, 15217031, 13119879, 11708091, 10546875, 9453125, 8291909, 6880121, 4782969
Offset: 1

Views

Author

Rui Duarte, Jan 22 2018

Keywords

Examples

			Triangle begins:
        1;
        2,      1;
        8,      5,      3;
       50,     34,     25,     16;
      432,    307,    243,    189,    125;
     4802,   3506,   2881,   2401,   1921,   1296;
    65536,  48729,  40953,  35328,  30208,  24583,  16807;
  1062882, 800738, 683089, 601441, 531441, 461441, 379793, 262144;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n - 1, j - 1] j^(j - 2)*(n + 1 - j)^(n - 1 - j), {j, k, n}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 22 2018 *)

Formula

T(n,k) = Sum_{j=k..n} binomial(n-1, j-1)*j^(j-2)*(n+1-j)^(n-1-j).
T(n,k) = A298593(n,k)/n.
T(n,k) = Sum_{j=k..n} A298594(n,j).
T(n,k) = (Sum_{j=k..n} A298597(n,j))/n.
Sum_{k=1..n} T(n,k) = A000272(n+1).