A298594 Triangle read by rows: T(n,k) = number of parking functions a of length n such that a(1) = k and if we replace a(1) = k with k+1 we don't get a parking function.
1, 1, 1, 3, 2, 3, 16, 9, 9, 16, 125, 64, 54, 64, 125, 1296, 625, 480, 480, 625, 1296, 16807, 7776, 5625, 5120, 5625, 7776, 16807, 262144, 117649, 81648, 70000, 70000, 81648, 117649, 262144, 4782969, 2097152, 1411788, 1161216, 1093750, 1161216, 1411788, 2097152, 4782969
Offset: 1
Examples
Triangle begins: 1; 1, 1; 3, 2, 3; 16, 9, 9, 16; 125, 64, 54, 64, 125; 1296, 625, 480, 480, 625, 1296; 16807, 7776, 5625, 5120, 5625, 7776, 16807; 262144, 117649, 81648, 70000, 70000, 81648, 117649, 262144; ...
Links
- Steve Butler, Kimberly Hadaway, Victoria Lenius, Preston Martens, and Marshall Moats, Lucky cars and lucky spots in parking functions, arXiv:2412.07873 [math.CO], 2024. See p. 6.
Programs
-
Mathematica
Table[Binomial[n - 1, k - 1] k^(k - 2)*(n + 1 - k)^(n - 1 - k), {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 22 2018 *)