A298597 Number T(n,k) of times the value k appears on the parking functions of length n and such that if we replace that value k with k+1 we don't get a parking function.
1, 2, 2, 9, 6, 9, 64, 36, 36, 64, 625, 320, 270, 320, 625, 7776, 3750, 2880, 2880, 3750, 7776, 117649, 54432, 39375, 35840, 39375, 54432, 117649, 2097152, 941192, 653184, 560000, 560000, 653184, 941192, 2097152, 43046721, 18874368, 12706092, 10450944, 9843750, 10450944, 12706092, 18874368, 43046721
Offset: 1
Examples
Triangle begins: 1; 2, 2; 9, 6, 9; 64, 36, 36, 64; 625, 320, 270, 320, 625; 7776, 3750, 2880, 2880, 3750, 7776; 117649, 54432, 39375, 35840, 39375, 54432, 117649; 2097152, 941192, 653184, 560000, 560000, 653184, 941192, 2097152; ...
Programs
-
Mathematica
Table[n Binomial[n - 1, k - 1] k^(k - 2)*(n + 1 - k)^(n - 1 - k), {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 22 2018 *)