cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298597 Number T(n,k) of times the value k appears on the parking functions of length n and such that if we replace that value k with k+1 we don't get a parking function.

Original entry on oeis.org

1, 2, 2, 9, 6, 9, 64, 36, 36, 64, 625, 320, 270, 320, 625, 7776, 3750, 2880, 2880, 3750, 7776, 117649, 54432, 39375, 35840, 39375, 54432, 117649, 2097152, 941192, 653184, 560000, 560000, 653184, 941192, 2097152, 43046721, 18874368, 12706092, 10450944, 9843750, 10450944, 12706092, 18874368, 43046721
Offset: 1

Views

Author

Rui Duarte, Jan 22 2018

Keywords

Examples

			Triangle begins:
        1;
        2,      2;
        9,      6,      9;
       64,     36,     36,     64;
      625,    320,    270,    320,    625;
     7776,   3750,   2880,   2880,   3750,   7776;
   117649,  54432,  39375,  35840,  39375,  54432, 117649;
  2097152, 941192, 653184, 560000, 560000, 653184, 941192, 2097152;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[n Binomial[n - 1, k - 1] k^(k - 2)*(n + 1 - k)^(n - 1 - k), {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 22 2018 *)

Formula

T(n,k) = n*binomial(n-1, k-1)*k^(k-2)*(n+1-k)^(n-1-k).
T(n,k) = n*A298594(n,k).
T(n.k) = A298593(n,k)-A298593(n,k+1).
T(n,k) = n*(A298592(n,k)-A298592(n,k+1)).
T(n,1) = n*A000272(n+2).
T(n,n) = n*A000272(n+2).
T(n,1) = A000169(n).
T(n,n) = A000169(n).
T(n,k) = T(n,n-k).