cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298598 Expansion of Product_{k>=2} (1 + x^k)^k.

Original entry on oeis.org

1, 0, 2, 3, 5, 11, 17, 32, 51, 91, 144, 241, 386, 618, 981, 1540, 2400, 3711, 5710, 8699, 13217, 19917, 29891, 44593, 66244, 97888, 144072, 211097, 308061, 447833, 648578, 935941, 1345985, 1929291, 2756440, 3926259, 5575720, 7895519, 11149261, 15701660, 22054901, 30900798, 43188113
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2018

Keywords

Comments

Number of partitions of n into distinct parts > 1, where n different parts of size n (beginning at 2) are available (2a, 2b, 3a, 3b, 3c, 4a, 4b, 4c, 4d, ...).
Convolution of the sequences A026007 and A033999.

Crossrefs

Programs

  • Mathematica
    nmax = 42; CoefficientList[Series[Product[(1 + x^k)^k, {k, 2, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} (1 + x^k)^k.
From Vaclav Kotesovec, Apr 08 2018: (Start)
a(n) + a(n+1) = A026007(n+1).
a(n) ~ Zeta(3)^(1/6) * exp((3/2)^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(7/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)). (End)